

Programa Analítico de Disciplina

FIS 490 - Física Biológica

Departamento de Física - Centro de Ciências Exatas e Tecnológicas

Catálogo: 2023

Número de créditos: 4

Carga horária semestral: 60h Carga horária semanal teórica: 4h Carga horária semanal prática: 0h Carga horária de extensão: 0h

Semestres: I

Objetivos

Oferecer aos estudantes do curso de física os conceitos fundamentais de Física Biológica

Ementa

Forças moleculares em meios biológicos. Proteínas. Ácidos nucléicos. Auto-organização de estruturas supramoleculares. Física das biomembranas. Crescimento e forma em biologia. Autômatos celulares biologicamente motivados.

Pré e correquisitos

FIS 202 e FIS 203

Oferecimentos obrigatórios

Não definidos

Oferecimentos optativos		
Curso	Grupo de optativas	
Bioquímica	Geral	
Engenharia Física	Geral	
Física - Bacharelado	Geral	
Física - Licenciatura (Integral)	Geral	
Química - Bacharelado	Geral	

A autenticidade deste documento pode ser conferida no site https://siadoc.ufv.br/validar-documento com o código: QYT9.61AO.4NXK

FIS 490 - Física Biológica

Conteúdo		Conteúdo					
nidade	Т	Р	ED	Pj	То		
1.Forças moleculares em meios biológicos 1.Introdução 2.Forças em macromoléculas 3.A água como solvente 4.Forças eletrostáticas em soluções iônicas 5.Forças de hidratação	4h	0h	0h	0h	4h		
2. Proteínas 1. Introdução 2. Elementos da estrutura das proteínas 3. Transições ordem-desordem 4. Mecânica macromolecular 5. Hemoglobina e mioglobina 6. Enovelamento e estabilidade de proteínas	10h	Oh	Oh	Oh	10		
3. Ácidos nucléicos 1. Introdução 2. Estrutura primária e secundária 3. Supercoiling de DNA 4. Splicing de RNA 5. Correlações de longo alcance no DNA	10h	0h	0h	Oh	10		
 4. Auto-organização de estruturas supramoleculares 1. Introdução 2. Citoesqueleto e dinâmica de microtúbulos 3. A estrutura de vírus simples 4. A forma das hemácias 	8h	0h	Oh	Oh	8h		
5. Física das biomembranas 1. Introdução 2. Bicamada lipídica 3. A membrana celular como uma barreira permeável 4. Equações de Nernst-Planck 5. Transporte ativo	8h	0h	Oh	Oh	8h		
6. Crescimento e forma em biologia 1. Introdução 2. A geometria fractal e sua aplicação em biologia 3. Origem das leis de escala fractais em sistemas biológicos 4. Modelos de crescimento em biologia	10h	0h	0h	0h	10		
 7. Autômatos celulares biologicamente motivados 1. Introdução aos autômatos celulares (ACs) 2. Modelos de ACs em imunologia 3. Modelos de ACs em epidemiologia/ecologia 4. Modelos de ACs para o controle da expressão gênica e diferenciação celular 5. Modelos de ACs para o comportamento social de insetos 	10h	Oh	Oh	0h	10		
Total	60h	0h	0h	0h	60		

 $A \ autenticidade \ deste \ documento \ pode \ ser \ conferida \ no \ site \ \underline{https://siadoc.ufv.br/validar-documento} \ com \ o \ c\'odigo: \ QYT9.61AO.4NXK$

Teórica (T); Prática (P); Estudo Dirigido (ED); Projeto (Pj); Total (To);

Planejamento pedagógico			
Carga horária	Itens		
Teórica	Apresentação de conteúdo oral e escrito em quadro convencional; Apresentação de conteúdo oral e escrito com o apoio de equipamento (projetor, quadro-digital, TV, outros); Apresentação de conteúdo utilizando aprendizado ativo; Debate mediado pelo professor; Apresentação de conteúdo pelos estudantes, mediado pelo professor; e Seminários		
Prática	Não definidos		
Estudo Dirigido	Não definidos		
Projeto	Não definidos		
Recursos auxiliares	Não definidos		

FIS 490 - Física Biológica

Bibliografias básicas		
Descrição	Exemplares	
DAUNE, Michel. Molecular Biophysics: Structures in Motion. Oxford, New York: Oxford University Press, 2003.	1	
JACKSON, Meyer B. Molecular and cellular biophysics. Cambridge, New York : Cambridge University Press, 2006.	2	
PHILIP Nelson. Biological Physics. USA: WH Freeman, 2011.	1	

Bibliografias complementares		
Descrição	Exemplares	
ALBERTS, B. Molecular biology of the cell. New York: Garland Science, 2002.	2	
BERG, Jeremy M. Biochemistry. New York: W. H. Freeman, 2002.	10	
BRITTON, N. F. Essential mathematical biology. London; New York: Springer, 2003.	1	
LIPOWSKY, R.; SACKMANN, E. Structure and dynamics of membranes. Amsterdam, Lausanne: Elsevier, 1995.	2	
WHITE, D. C. S. Biological physics. London : Chapman and Hall , New York: Wiley, 1974.	1	

Pontos de controle			
Campo	Anterior	Atual	
Oferecimentos	BBQ 0 ;EGF 0 ;FCA 0 ;LCQ 0 ;QCA 0 ;	BBQ 0 ;EGF 0 ;FCA 0 ;QCA 0 ;	